

Motivation

- *Fusion goal*: Make nuclear fusion a commercially feasible energy source
- Major challenge: plasma stability
- if we can predict plasma stability \rightarrow manipulate plasma to avoid instabilities/dangerous modes
- Tokamak plasma profiles are inputs to plasma stability codes
- Can AI help us predict plasma [profile] evolution?
- Plasma evolution knowledge \rightarrow predict potential instability onsets

Deep Learning with Neural Networks

- Inspired by biological neural networks
- Interdisciplinary applications (including fusion, particularly disruption predictions)
- Supervised learning problem (target profiles known)

1.a.) Weights (W) and biases (b) for the model's raw neuron activations (A^{i+1}) are defined as:

Г лі+17	ΓW_1^1	W^1_{2}		W^1 7					
A_1		112	•••	$\cdot \cdot np$		A_1			Tensors are
$ A_2^{i+1} $	W_{1}^{2}	•••		•		A_2^i		b_2	ovtandad by
. =				·	•	•	+		extended by
:	•							:	one rank for
A_m^{i+1}	$ _{U/n}$			W^n		A_{nn}^i		$ b_{nn} $	multi-laver NN
	$L^{VV}1$	• • •							manti-layer www

- 1.b.) Raw neuron acts. are linearly activated: $ReLU(A_{i}^{i+1}) = max(0, A_{i}^{i+1}) = x^{+}$
- 2.) A mean-absolute difference loss [error] function is defined for loss minimization:

$$loss(\hat{y}_i) = \sum_{1}^{batchsize} \left| \frac{(y_i - \hat{y}_i)}{batchsize} \right|$$

 \hat{y}_i : parameterized by W and \dot{b}

ww.PosterPresentations.com

y_i is the sum of the target values vector and \hat{y}_i is the sum of the predicted values vector

• 3.) Learning Process: Minimize $loss(\hat{y}_i)$ by updating weights and biases (θ) using SGD algorithm; 4.) minimization optimized by Adam optimizer

$$\theta^{i} \leftarrow \theta^{i-1} + \frac{\gamma^{i}}{batch} \sum_{n \in batch} (\nabla_{\theta} f_{n}(\theta)|_{\theta = \theta^{(i-1)}})$$

 θ^{ι} : updated weights and biases

 γ^{ι} : learning-rate schedule;

Predicting the Temporal Evolution of Tokamak Plasma Profiles with Deep Learning Jalal Butt¹ and Egemen Kolemen^{2,3}

¹Central Connecticut State University, ²Princeton University, ³Princeton Plasma Physics Laboratory

Another example of ion-hollowing onset prediction

Background - Deep Learning via Recurrent Neural Networks

Why?: Rudimentary NN previously developed doesn't explicitly use previous time-steps and predictions • as model inputs (doesn't have "memory") – but plasma evolution has spatial + *temporal* dependence

Relevant information

- **R**ecurrent **N**eural **N**etwork Model: • LSTM Units: 200; LSTM Cells [layers]: 4 • *Limited* by comp. power
- 588 [DIII-D] shots
- 50-ms time-slices
- Built using Google's TensorFlow API

Model Inputs:

- Previous 150-ms of n_e, n_i, T_e, T_i, Rot. profiles (zipfit - OMFITmdsplus)
- OD time-traces (previous and concurrent)
- NBI power/torque, gas A/B flowrates, ECH power

Model Outputs:

• Future (unseen) 150-ms of plasma profiles

PRINCETON UNIVERSITY

Implementing RNN in NERSC **Supercomputers**

Awarded NERSC exploratory resources to upscale project

Implementing RNN model in Cori and Edison Supercomputers

• Necessary: increase accuracy \rightarrow increase computational power

Future Work

Model in early stages (lots still to do): Larger training shot list (model currently trains) on ~600 shots– lots more data available) More OD data (power and torque from each beam – potentially valuable influence on local spatial scales)

 Comparing profile evolution predictions for data-driven and physics-based models

• CNN-RNN hybrid - learn more abstract spatial patterns

• Parameterize input data – reduce

computational expense

• Kinetically-constrained plasma profiles

• Train model on plasma transport codes (e.g. TRANSP)

References and Acknowledgements

• [1] Long Short-Term Memory, Hochreiter et al, Neural Computation 1997 • [2] Adam: A Method for Stochastic Optimization, Kingma et al, ICLR 2015 • [3] A Brief Introduction to Machine Learning for Engineers, Simeone, KCL

• This work is supported by US DOE grants DE-FC02-04ER54698, DE-AC02-09CH11466, and DE-SC0015878.

NERSC, U.S. D.O.E. Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

Princeton Plasma Physics Laboratory, DOE for funding the Summer Undergraduate Laboratory Internship (SULI)

• Patrick Vail, Florian Laggner, and Yichen Fu for their insight to fusion plasmas.